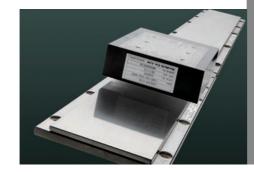


AL40G AL60G


Linear Motor Drive High-speed & High Precision Die-Sinker EDM

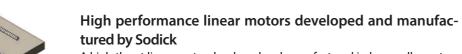
Core Technology

Die-sinker EDM for Precision Mold and Precision Parts Machining **5** Core Technologies

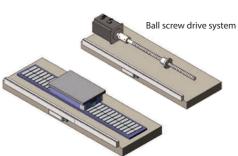
Sodick continually invests in research and development to provide useful products for

We develop and manufacture in-house the best electric discharge machines by combining five core technologies: linear motors, motion controllers, power supply devices, discharge devices and ceramics.

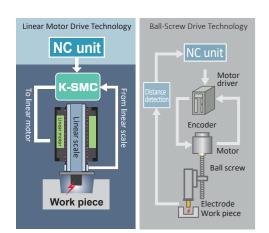
Our new products AL40G and AL60G are a new generation of precision die-sinker EDM that is a fusion of the linear motor control technology accumulated over 20 years, the latest discharge control technology, and artificial intelligence (AI).


Tech

Tech


Linear Motor Drive System

Features of linear motors


Among the many features of our linear motors, the biggest are high speed and high response. These are achieved because of no abrasion during movement and no need to have ball screws. Conventional drive systems use ball screws to convert rotary motion into linear motion. With this method, however, mechanical conversion errors adversely affect the tracking performance of the highspeed servo. Thanks to linear movement, there are no conversion errors from rotary motion in linear motors, and direct drive achieves accurate positioning and quiet, high-speed operation.

A high-thrust linear motor developed and manufactured in-house allows stop, acceleration, constant speed, deceleration and stop operations at high speed and with high response. Also, backlash is eliminated, which is impossible with conventional ball screw drive systems, and accurate axis movement is maintained semipermanently.

Linear motor drive system

Sodick Motion Controller (K-SMC)

Linear motors have an ideal direct drive mechanism. With excellent high-speed movement and positioning accuracy, because there is no mechanical contact, high responsiveness and long-term stability, maintainability, and reliability are maintained. The performance of the linear motor used in this drive system is maximized by combining the motor with the K-SMC motion controller that Sodick has refined over many years.

Since the new AL series of die-sinker EDM does not use ball screws, direct position detection with no axis movement error is possible. Unlike conventional methods, in which the state of the detected discharge gap is monitored by the NC unit and controlled through a motor driver, the Sodick motion controller directly monitors and controls the linear motor. Therefore, real-time control without delay upon gap detection has been realized. This achieves high response and precise control.

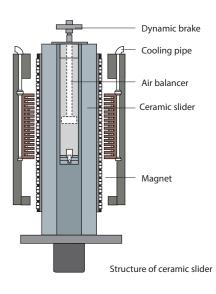
Equipped with the New Numerical Control Unit + New Stable Electrical Discharge System

The numerical control unit SP power supply is an ideal power supply device that supports a variety of machining and operations. By adopting the latest M4-LINK CNC board, the communication speed and processing speed have been improved, and the motor control response speed has been more than doubled.

Equipped with the latest Arc-less 4 stable electrical discharge system, the performance of the die-sinker EDM has been dramatically improved, with higher speed, suppression of electrode wear to the utmost limit, and realization of a wide variety of machining surface finishes, from satin finish to mirror surface.

An in-house manufactured lightweight ceramic slider with high rigidity and low thermal displacement is adopted for the main spindle linear motor slide part. By mounting linear motors on the left and right sides of the slide part in a well-balanced manner, and offsetting the magnetic attraction force, shifting and warpage of the slide part is prevented, achieving high straightness and smooth driving.

Through high straightness and smooth driving realized by synergy with a high-speed and high-response linear motor, high-speed and stable deep rib machining has been achieved. In addition, the high-speed jump effectively discharges the machining tips, reducing abnormal arcs and machining shape defects attributed to secondary discharge, and greatly reducing machining time.


Advantages of ceramics

- Because of its light specific gravity, if it is used for moving parts such as a table, light weight can be achieved and eventually the load on the motor can be reduced.
- Because of its small linear expansion coefficient, thermal displacement in response to environmental temperature changes is suppressed.
- With its excellent insulation properties, fine discharge energy during fishing work can be transmitted accurately between electrodes.

SP Power Supply Arc-less 4

Ceramic Parts

High-rigidity Structure & Excellent Workability

In addition to realizing high-rigidity machine structure by an optimal design created using the latest CAE analysis technology, we pursued improving operator workability as well.

Since the three-sided automatic vertical machining tank moves up and down in conjunction with the machining fluid level, the workpiece being machined is highly visible. Because of the openness when the machining tank is lowered, the workpiece status can be checked from left and right, making preparation easy for complicated jobs.

The fluid level adjustment knob, jet suction adjustment knob, and the jet and suction pressure gauge are all arranged on the front side of the machining tank, enabling efficient setup work.

Total Temperature Control **TH COM**

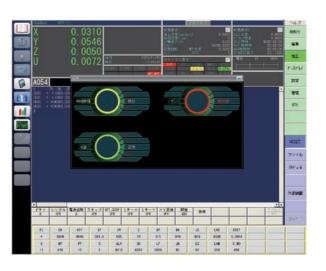
Through sensing, the temperature of each component of the machine is precisely corrected and the Thermal Commit (TH COM) function, which provides various diagnostic functions, minimizes thermal displace-

ment due to temperature changes in the installation environment and during high-speed driving.

LN Pro Al

Our new products AL40G and AL60G have a large 19-inch touch panel with excellent operability. Furthermore, the LN Professional AI (LN Pro Al) condition advisor, which continually provides optimum machining conditions through artificial intelligence (AI) is standard equipment, and it is possible for beginners to experienced users to take maximum advantage of the machining performance of the AL40G and AL60G. Simple four-step operation (shape selection, machining plan, detailed conditions, position setting) allows the best performance, depending on the purpose.

Equipped with all the Latest Machining Circuits as Standard TMM4, TPC4, BSN4


New controls and circuits have been prepared to improve the quality and speed of all discharge machining areas. Those improvements include high speed in rough machining using short-pulse high-peak current (TMM4 circuit), high speed in the intermediate finishing area by improving fitness to narrow gaps (TPC4 control), and uniform and high speed discharge in the finishing area by accurate pulse control (BSN4 circuit).

AIM (Al Maintenance)

Sodick-I

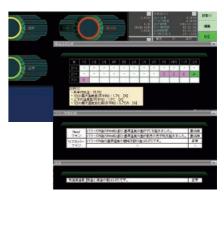
Supports productivity improvement through analysis, investigation and monitoring

Al Maintenance (AIM) monitors and automatically diagnoses each status of the machine, including the operation status, maintenance status, and machine installation environment. This boosts the machine's operation rate, reduces machining defect rates and improves traceability.

S-Viewer

This software inspects each NC unit at a fixed interval to collect data. The operating condition of the registered NC unit can be centrally managed to improve the machine operation rate.

SEIKAnet


Sodick's network system uses standard network protocols. NC programs can be transferred between the machine and a PC, or between machines.

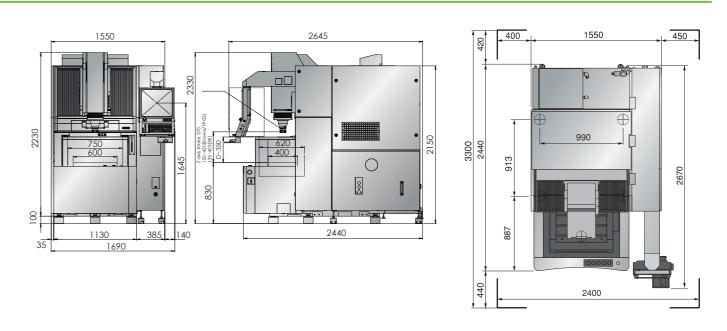
LQ e-mail

Efficient process monitoring is supported, by transferring error and stop information by e-mail, and by checking the operating conditions from a remote location.

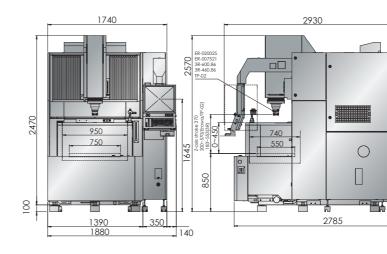
Automation System (Option)

We propose a complete automation system (automatic workpiece/electrode exchange system) that uses articulated robots, etc. By taking full advantage of a machining tank incorporating a three-sided vertical mechanism that takes an automation system into consideration, a system tailored to customer needs can be developed.

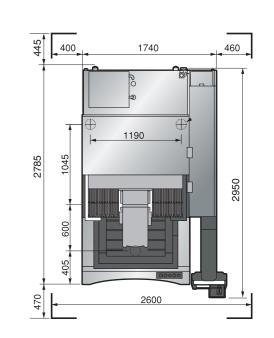
AL40G AL60G


Machine Tool		AL40G				AL60G			
Work Table Size (W x D)		600 x 400 mm (Ceramic)			7	750 x 550 mm (Ceramic)			
Work Tank Inner Dimensions (W x D x H)		750 x 620 x 350mm			9	950 x 740 x 450mm			
Work Tank Fluid Level (Min to Max)		100 to 300 mm			1	150 to 400 mm			
Work Tank Capacity		190 Liters			3.	330 Liters			
X Axis Travel		400 mm			6	600 mm			
Y Axis Travel		300 mm			4	420 mm			
Z Axis Travel		270 mm			3	370 mm			
	Automatic	EROWA	COMBI	ER-020025	E	ROWA	COMBI		ER-020025
		EROWA	ITS	ER-007521	E	ROWA	ITS		ER-007521
Clamping Chuck		3R	COMBI	3R-460.86-	2 3	R	COMBI		3R-460.86-2
		3R	MACRO	3R-600.86	3	R	MACRO		3R-600.86
	Manual	TP-02			T	P-02			
Max Weight of Electrode		50 kg			50	50 kg			
Max Workpiece Weight		550 kg			1.	1500 kg			
Distance Between Electrode and Table Top		150 to 420 mm ^{*1}			2	200 to 570 mm ^{*1}			
Distance from Floor to Table Top		830 mm			8	850 mm			
Machine Tool Dimensions (W x D x H)		1550 x 2440 x 2330 mm			1	1740 x 2785 x 2570 mm			
		(Includes a Power Supply and Dielectric Tank)			(1	(Includes a Power Supply and Dielectric Tank)			
Machine Tool Weight		4000 kg (Includes a Power Supply and Dielectric Tank)			nk) 5	5150 kg (Includes a Power Supply and Dielectric Tank)			
Air Pressure		0.65 MPa ^{*2}			0.	0.65 MPa ^{*2}			
Air Flow		100NL/min			10	100NL/min			
Total Power Input		3-phase, 50/60 Hz, 10 kVA			3.	3-phase, 50/60 Hz, 10 kVA			

*1 EROWA/TP specification *2 If required air pressure is not met, Pressure Booster (Option) must be installed.


Dielectric Tank	AL40G	AL60G
Dielectric Fluid	EDM Oil	EDM Oil
Dielectric Tank Capacity	285 Liters	465 Liters
Required Amount	330 Liters	560 Liters
Filtration	Replaceable Paper Filters	Replaceable Paper Filters

CNC Power Supply SF	7 SP-E					
Max. Machining Current		40A				
Discharging Power Supply Unit		Optimum Pulse Control [Arc-less 4, TMM 4, TPC 4, BSN 4, SVC]				
Power Requirement		AC200 V, 50/60 Hz				
NC Unit		Multitask OS, K - SMC-LINK Method (M4 - LINK)				
User's Memory Capacity		Editing: 100,000 Blocks Saving: 30 MB				
Memory Device		SSD Card, Dedicated USB Memory				
Input Format		Dedicated USB Memory, Multi Touch Panel, Keyboard, LAN				
Display Type		19-inch TET-I CD				
Character Set		Kanji (JIS Level 1 Kanji Characters), Alphabetic Characters, Numeric Characters, etc.				
Keyboard		Standard 101 Keyboard, Function Key				
Positioning Command		Incremental and Absolute				
Max. Input Command		±999999.999/±99999.9999/±99999.99999 (switchable)				
Machining Conditions Storage Capacity		1000 Conditions (C000 to C999)				
Offset Setting Storage Capacity		1000 Conditions (H000 to H999)				
Program Sequence Number Assignment		N00000000 to N999999999				
Number of Coordinates		60				
Simultaneous Control Axes		Max. 4 Axes (SP-E: 6 Axis Specification/8 Axis Specification)				
Min. Input Command		0.001µm				
Min. Drive Unit		0.01µm				
AJC Speed		XY Axes : Max. 10 m/min, Z Axis : Max. 36 m/min				
Max. Feed Rate	XYZ Axis	6 m/min				
Position Detection Mechanism		Full - closed Loop (Linear Scale)				
Drive Mechanism		Linear Motor				
Compensations		Pitch Error Correction, Plane Pitch Error Correction, Torque Correction for Each Axis				
Graphics		XY/ YZ/ ZX Plane, Graphics Drawing During Machining, Background Graphics Drawing,				
		LORAN Shape Drawings, Discharge Graphs, etc.				
IoT		Compatible to S-VIEWER (Compatible to MT-CONNECT : Option)				
Maintenance		Al Maintenance				


AL40G

AL60G

Unit: mm

Unit: mm

Linear Motor Drive High-speed & High Precision Die-Sinker EDM

The export of Sodick's products and its related technologies (including software applications) is regulated under Japan's Foreign Exchange and Foreign Trade Control Law. In addition, because some of these products may be subject to re-export controls under the Export Administration Regulations (EAR) of the United States; please contact Sodick before offering or exporting these products overseas.

- This catalogue contains a photographic image that has been generated from 3DCG.
- Options may be included in the photos and the contents of this catalogue.
 Due to ongoing research, specifications are subject to change without prior notice.

The contents of this catalogue is current as of February, 2020.

Sodick Co., Ltd.

3-12-1, Nakamachidai, Tsuzuki-ku, Yokohama, Kanagawa 224-8522 Japan TEL: 81-45-942-3111 FAX: 81-45-943-7880

https://www.sodick.co.jp/en/